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THREE KINDS OF POROSITY ON FUNCTIONALLY GRADED POROUS BEAMS 

In this paper, the effects of three types of porosity on bending behavior of functionally graded porous (FGP) 

beams are studied. The procedure of finite element method (FEM) is established and based on the simple 

Timoshenko beam theory. The results achieved in this paper are presented and compared with other results in 

the references to verify the feasibility of implementing the formula and writing the Matlab code. On the other 

hand, this paper can help researchers to have an overview of the bending behavior of the FGP beams.   

Keywords: bending behavior, functionally graded porous (FGP) beam, transverse displacement, rotation, 

simple Timoshenko beam. 

 

Introduction 

Nowadays, functionally graded (FG) material has become one of the smart materials and it is used in many 

countries. From a mixture of ceramic and metal, it provided a continuous variation of material properties from 

the top surface to the bottom surface of a structure. For example, some structures like nuclear tanks, spacecraft, 

etc. are produced based on the above material [1-3]. Due to the high applicability of FG material, many studies 

related to various theories have been given to comment the mechanical behavior of FG structures as [4-9]. 

However, porosity of the material can occur during the manufacturing process [10-12]. So, for a good 

knowledge of porosity effect on bending behavior of FG structures, a study related to this issue must be 

considered as soon as possible. There are three types of structure, like beam, plate and shell, but researchers 

are usually interested in beam structures because of its wide applications. Furthermore, many different beam 

theories were used to analyze beam structures, like simple beam theory [13], classical beam theory [14, 15], 

first-order shear deformation theory [16-20] or higher-order shear deformation theory [21, 22]. However, using 

a simple Timoshenko beam model helps us to reduce the computational cost with the resulting error within the 

allowable range. On the other hand, beams made of FGP materials should be investigated as much as possible 

to help the designer have the right knowledge about the mechanical properties. The few published papers on 

static bending behavior of FG beams can be listed here. Author Chen and co-workers presented the Ritz method 

to obtain the transverse bending deflections and critical buckling loads, where the trial functions take the form 

of simple algebraic polynomials [23]. A novel model was introduced for bending of FGP cantilever beams by 

[24] related to shape memory alloy/poroelastic composite material. In this article, the authors verified the 

accuracy of the bending model by a three-dimensional (3D) finite element method (FEM). Another paper based 

on trigonometric shear deformation theory was used to analyze the bending, vibration and buckling 

characteristics of FGP graphene-reinforced nanocomposite curved beams from [25], and so on. From above 

reasons, this paper is given to investigate the bending behavior of FGP beams.  

This paper has four parts. Part 1 gives the introduction as above. Part 2 presents the formulations as well as 

Part 3 shows some essential results. Finally, a few comments are also given in Part 4, respectively.  

Formulations 

A FGP beam with length L, width b and thickness h is considered. Three forms of porosity distributions are 

studied and shown in Figures 1 and 2, in which (1) is uniform porous distribution and (2) and (3) are non-

uniform porous distributions respectively. The normalized Young’s modulus E(z)/E1 is depicted in 

Fig. 2 (a) - (c) to clarify the influences of these three forms of porosity with the value of Young’s modulus at 

top surface, E1. 
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Fig. 1. FGP beam with three types of porosity 1, 2 and 3 

The material properties such as Young’s modulus, E(z), and shear modulus, G(z), can be described as below: 
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The porosity coefficient e0 must satisfy 0 < e0 < 1 and 
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Based on FEM, the degrees of freedom associated with a node of a simple Timoshenko beam element are 

a transverse displacement and a rotation as depicted in Fig. 3. Using the principles of simple beam theory, the 

beam element stiffness matrix Kel  will be derived 
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with 

   / 2
el el el el el= 12E I G sA L , 

 
(6) 

s =5/6 is called the shear correct factor; Eel, Gel and Iel are Young’s modulus, shear modulus and second moment 

of area of element based on E(z), G(z), b and h; Lel is length of element and Ael is called the area of cross 

section. 
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Fig. 2. Normalized material property E(z)/E1 with (a) type 1, (b) type 2 and (c) type 3 of porosity 

According to the principle of minimum total potential energy, the element equation can be described as 
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After assembly, the bending variables can be obtained by solving the following equation: 

Ktotal dtotal = Ftotal         (8) 
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Fig. 3. Two nodes  i  and  j  of a beam element 

 

By using three letters C, S and F refer to the clamped, simply supported and free condition, all boundary 

conditions can be revealed as below (Fig.4). 
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Fig. 4. Three types of boundary condition 

 
From Fig. 4, the boundary conditions of system can be presented: 

                                              w(0)=φ(0)=0 , w(L)=0               for  CS (9) 

                                              w(0)=φ(0)=0 , w(L)=φ(L)=0     for  CC   (10) 

                                              w(0)=φ(0)=0                                 for  CF  (11) 

More clearly, the finite element system of equations can be reached as below 

  Input data: material and geometrical properties, 

  Calculating constitutive matrix, 

  Loop over elements: calculating element stiffness matrix Kel  and element force vector Fel , 

  Assembling all parts in the global coordinate system to have totalK  and totalF , 

  Applying boundary conditions CS, CC or CF, 

  Solving equation to achieve totald , 

  Display transverse displacements w and rotations  at nodes of system. 

Numerical Examples 

Firstly, the validity of the proposed model is checked for (CC) and (CS) isotropic beams under a uniform 

load  q = 106 N/m2. The material and geometric properties are E = 1 GPa,  v = 1/3,  b = 0.1 m, h = 0.1 m and L 

= 10h. The maximum transverse displacement and rotation as in the Table below are calculated and compared 

with analytical solutions [26] as follows:  
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It can be seen that the results obtained from the paper are completely approximate with other results. The 

relative error among above results can be explained by using different approaches. 

Table. The comparison of the maximum transverse displacements at position x = L/2  

of (SS) isotropic beams with L/h = 5 

CC 

maxw  max  

Analytical Paper Analytical Paper 

0.3125 0.3126 0.9375 0.9383 

CS 

maxw  max  

Analytical Paper Analytical Paper 

0.6480 0.6466 1.7187 1.7002 
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Secondly, the material of the porous beam is assumed to be steel foam with E1 = 200 GPa, v = 1/3. The 

cross section of beam is h = 0.1 m, b = 0.1 m . The normalized maximum deflections 
max /w w h  based on 

this study for two boundary conditions (CC) and (CS) are compared with other results of [23] as in Fig. 5. 

Again, their convergence proves the reliability of the proposed method in bending analysis of FGP beams. 

Thirdly, by changing the boundary condition from 

(CC) to (CS) and (CF), the bending behaviors of FGP 

beams can be seen in Fig. 6 (a) - (c) for three types 1, 2 

and 3. Once again, the effects of porosity on the bending 

behavior of this structure are clearly presented in these 

Figures. Furthermore, Fig. 7 depicts the influence of 

porosity on the deflections of (CF) porous beams for 

type 1, type 2 and type 3 respectively.  

Finally, by varying the porosity coefficient e0, the 

length to thickness ratio L/h and three types 1, 2 and 3, 

the results of the normalized transverse displacement 

= ( ) /w w L / 2 h  at position L/2 of FGP beams with (CC) 

boundary condition are plotted in Fig. 8 (a) - (c). As the 

porosity value increases, the deflection of FGP beam 

also increases and this statement holds for all cases. 

 

Fig. 5. Convergence of the deflection 

 

  
(a) (b) 

 
(c) 

Fig. 6. The influence of e0 on the deflections of porous beams with (a) type 1 / (b) type 2 / (c) type 3  
for three boundary conditions 
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Fig. 7. The influence of e0 on the deflection of (CF) porous beam with three types 1, 2 and 3  

 

  
(a) (b) 

 
(c) 

Fig. 8. The deflections of (a) type 1 / (b) type 2 / (c) type 3 (CC) porous beams  

by changing ratio L/h and porosity factor e0 

Conclusion 

The bending behaviors of FGP beams under three different types of boundary condition and three kinds of 

porosity are presented in this study. The verification results based on this Matlab code are in good agreement 
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with other results in reference and the main goal of the author is to demonstrate the applicability of simple 

theory to analyzing the FGP beams with acceptable results. 
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