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FORMATION OF STIFFNESS MATRICES OF PLANE ELEMENTS BASED ON 

HIGH-ORDER DEGREE POLYNOMIALS 

In this paper, the method for forming the stiffness matrix of a plane element in a plane stress-strain state 

using functions approximating the displacements of the points of the element in the form of high-order degree 

polynomials is considered. 
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Introduction 

When calculating structures using the finite element method, a solid area is represented as an area consisting 

of a number of smaller areas, called finite elements. To approximate the point displacements of the finite 

rectangular or triangular element, linear functions are usually used to ensure the continuity of deformations in 

the nodes and along the edges of the junction of finite elements. In order to increase the accuracy of the 

solution, the number of finite elements into which a solid area is divided increases, resulting in a significant 

increase in the order of the system of solving equations.  

When calculating a lamellar structure, for example a large-panel building, the main structural elements of 

which are plane rectangular elements (wall panels, partition panels, floor and roof slabs), a typical structural 

element of a large-panel building can be taken as a finite element. 

Since during the assembly of a large-panel building the main docking of its elements is carried out at nodal 

points, when selecting functions approximating the displacement of points of the element, it is not necessary 

to ensure conditions of continuity of deformations along the edges of structure element dockings. This allows 

using nonlinear functions as approximating functions, for example, high-order degree polynomials. The basic 

provisions of this methodology are described in [1-3]. 

Stiffness Matrix of a Plane Element Based on High-Order Polynomials 

In the work [4], the stiffness matrix of a plane rectangular plate was obtained, operating according to the 

beam-wall scheme, loaded with concentrated forces applied at the nodal points of the plate free from bonds. 

The problem was solved by the Ritz variation-energy method. To approximate the displacement functions of 

an arbitrary point, degree polynomials of the following type were taken:  
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where 

K = (m+1)·(n+1) –  number of members of the series to be retained; 

ƒ1 (x,y) and ƒ2 (x,y) –  functions that meet kinematical boundary conditions (conditions for fixing the plate 

as a completely solid body). 

The accuracy of the solution was achieved by increasing the number of retained members of series. In this 

case, the dimension of the obtained stiffness matrix remained constant.  
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In the finite element method, the elements into which the structure is divided are outwardly kinematically 

free. In order to use the considered plate as a finite element of the system, we will free it from bonds and allow 

it to move in its plane, as an absolutely stiff body (Fig. 1). 

 
                                                                     Fig 1. 

 

Here 

u - displacements of the arbitrary point caused by elastic deformations; 

Δ - additional displacements of the arbitrary point caused by the displacement of an element as an absolutely 

solid body; 

v - full displacements of the arbitrary point; 

w1, w2, w3  - components of the "rigid" displacement of the plate. 

During small displacements 

tgφ = φ = (w3 – w2) / а. 

The total displacements of the arbitrary point A (x1, x2) inside the plate will consist of displacements caused 

by elastic deformation and additional displacements caused by the displacement of the plate as an absolutely 

solid body: 

{v} = {u} + {Δ}.                                                                      (2) 

(2×1)  (2×1)  (2×1) 
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The vector of elastic displacements {u} was obtained in [4]. 

Additional displacements Δ are expressed through w displacements according to the known ratios of 

analytical geometry (Fig. 2). 

 

Fig. 2. 

The displacement of the considered point A after displacement of the plate as an absolutely solid body will 

be equal to: 

Δ1 = х1
𝐼𝐼

 – x1 = w1 + x1cosφ –x2 sinφ – x1 =  w1–x2sinφ – x12sin2φ/2; 

           Δ2 = х2
𝐼𝐼

 – x2 = w2 + x1sinφ +x2 cosφ – x2 =  w2–x1sinφ – x22sin2φ/2.               (3) 

Taking into account the smallness of the angle φ, it is possible to neglect the sizes of the second order of 

smallness in expression (2) and, besides, to accept  

sinφ ⁓ tgφ = (w3 – w2) / 2. 

Then the expressions for the displacement of point A can be recorded as follows: 

Δ1= w1 + х2·w2 / a - х2·w3 / a; 

Δ2 = (1-x1 / a) w2 +  х1·w3 / a.                                                             (4) 

Let us represent the resulting equations in matrix form: 

{Δ} = [ZD] · {w}.                                                               (5) 

Here the matrix [ZD] of dimension (2 × 3) has the following form: 

 

  [ZD] = 

 

Put the obtained expressions for {u} and {Δ} in formula (1):  

v} = [Z]·{U} + [ZV]·{w}.                                                               (6) 

1 х2 /а - х2 /а 

0 1- х1 /а х1 /а 
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                                                       (2×1)  (2×3) (5×1) (2×3) (3×1) 

After a simple transformation, expression (5) is represented as: 

{v} = [Zd]·{р},                                                                      (7) 

        (2×1) (2×8)(8×1) 

where  {р} - a vector, the elements of which are "elastic" displacements of  unfixed nodes of the plate and 

three independent displacements of this plate as an absolutely solid body. 

{р} = {u21 u31 u32 u41 u42 w1 w2 w3}т.                                                    (8) 

By setting the coordinates of the nodal points in formula (4), the total nodal displacements are expressed 

through the vector {p}: 

{V0} = [M]·{р}.                                                                       (9) 

(8×1)  (8×8)(8×1) 

Matrix [M] is obtained from consideration of the geometric scheme of displacements. The vector {p} is 

determined from expression (8): 

{р} = [ M ]-1{ V0 }.                                                                (10) 

By putting the expression (9) into formula (6), we will obtain the value of the displacements of the arbitrary 

point of the plate through the displacements of its nodes: 

{v} = [ Zп ] [ M ]-1{ V0 }   or  {v} =[ Z0 ]{ V0 },                                        (11) 

                                                                           (8×1)  (8×8) (8×1) 

where  [ Z0 ] = [ Zп ] [ M ]-1  is the so-called coordinate matrix. 

Expressing all the components of the stress-strain state of the arbitrary point of the plate through the 

displacements of its nodes, we make up the functional of the total potential energy of the deformation of a 

rectangular flat plate having 8 degrees of freedom and loaded with a system of nodal concentrated forces. 

Minimizing the functional of the potential deformation energy through nodal displacements, we come to a 

system of algebraic equilibrium equations: 

𝐸ℎ

1−𝜈
2 [ T ]·{U} ={ F }.                                                                     (12) 

                                                                (8×8) (8×1) (8×1) 

Here 

E and ν – elastic constants of the material; 

h –plate thickness; 

{ F } – vector of nodal concentrated forces. 

Rectangular symmetric matrix [T] is the stiffness matrix of the standard element: 

[ T ] = ∬[𝑆]T [ μ]·[ S ]dx1dx2 .                                                                                       (13) 

Here [S] and [μ] -  matrices obtained by forming an expression for the potential energy of deformations in 

matrix form. 

The general algorithm for calculating the elements of the stiffness matrix is represented by the formula: 

tij = ∬[(𝑠 1i + μs2i)s1j + (μs1i + s2i)s2j + 
1−𝜇

2
 s3is3j]dx1dx2 .                                                       (14) 

Conclusion 
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The stiffness matrix of the element obtained by the given algorithm depends on the degree of approximation 

of the displacement functions. The desire to obtain a more accurate solution will require the preservation of a 

larger number of members of the series (1).  

In traditional FEM, the refinement of the solution is achieved by dividing the solid area into smaller parts 

or by assigning a greater number of node points to the finite element. But if in the FEM this leads to an increase 

in the size of the stiffness matrices, then they have a constant dimension regardless of the number of retained 

members of the series in the displacement functions.  

This allows taking relatively large structural elements of large-panel buildings and other prefabricated 

structures as basic finite elements, which makes it possible to significantly reduce the order of the resolving 

system of equations formulated for the entire structure. 
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