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Abstract: A method has been developed for predicting strong ground 
motion displacements and accelerations, assuming that an earthquake 

is an instantaneous mechanical rupture of the Earth’s crust. The 
method uses derived theoretical formulas to calculate all three 
parameters of the ground motion: displacements, velocities, and 

accelerations during strong (with a magnitude  of M≥6.0) earthquakes 

for any non-homogeneous (multilayer) ground beddings with various 
physical and mechanical characteristics – thicknesses, densities, and 
shear moduli – and at a certain distance from the expected 

earthquake’s rupture. The example provided involves the results 
obtained for a number of two-layer heterogeneous site variants in 
seismic categories I-IV at the magnitude of M=7.0 and distance of 15 

km from the expected earthquake’s rupture. A comparison of the results 
obtained for actual heterogeneous foundation beddings with the 
equivalent homogeneous beddings showed divergences by 1.3-1.6 

times, depending on the number of higher mode oscillations 
considered. Recommendations are provided for simplified calculation 
of seismograms and accelerograms for heterogeneous foundation 
beddings, with a certain correction of calculation results for equivalent 

homogeneous beddings. 
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Introduction  

One of the main issues in seismic-resistant construction is the availability of a large number of 
accelerograms for past strong earthquakes at the site of a future construction project, recorded during a 

sufficiently long period. This would allow to identify statistically characteristic types of accelerograms for 

the given site and, therefore, to design reliable structures through calculations of seismic impact based on the 
selected accelerogram or a group of accelerograms. However, so far there have been too little records of past 

strong earthquakes in the seismically active zones of the Earth [1,2].  

During an earthquake, in addition to the permanent (dead load weight) and imposed (weight of what is 
inside the building, rooftop snow, etc.) loads, buildings and structures are subjected to seismic loads. In 

reality, the latter are not loads (forces) per se. When the ground moves under a structure, due to inertia its 

individual parts move with a lag compared to the ground motion and the structure bends. This is similar to 

the impact of horizontal forces on the structure, which are perpendicular to its axis. These inertia forces are 
caused by the mass and rigidity of the superstructure. Values of these alternating inertia or seismic forces 

depend primarily on the alternating values of ground acceleration (accelerogram) during the earthquake. All 

of the above mentioned loads, except the seismic ones, create direct physical impact, have permanent 
direction, and exist during the whole useful lifespan of a structure. Seismic load has a dynamic nature and is 

active only during an earthquake. Therefore, seismic hazard parameters for a given area primarily depend on 

the values of horizontal (vertical, rotational) ground motion accelerations and their changes over the time [3]. 
This proves the importance of studying the issues related to creation of artificial seismograms and 

accelerograms for strong earthquakes that would adequately reflect the properties of actual recorded 

earthquakes. A brief overview of the problem was published in the initial articles [3,4]. The results of the 

studies published in the articles (in the opinion of many experts, close to the results recorded during real 
strong earthquakes) are apparently the only ones at the moment. 

The choice of a two-layer base as an example of a heterogeneous base is due to the fact that for two-layer 

base the ratio Vs1 and Vs2 of the shear wave propagation velocities in soils during strong earthquakes plays a 
significant role in the magnitude of displacements and accelerations of the Earth's soil surface, and in many 
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cases the cause of destruction of above-ground structures is the low value of the first layer velocity Vs1, (in 

some cases it is advisable to remove the "weak" first layer). In addition, any conventional multi-layer base 
can be reduced to a two-layer base with equivalent dynamic and seismic properties. Therefore, the main goal 

of this study is to cover all possible cases of different ratios Vs1 and Vs2 of two-layer bases (the article 

considers 16 cases). It should also be noted that in developing the forecasting method [3,4] the fundamental 
works of the following famous scientists were widely used: Brune J., Esteva L., Kasahara K., Wells D. and 

Coppersmith K., Lomnitz C. and Singh K., Faccioli E. and Resendiz D., etc [5-9].  

Materials and Methods 

In our previous works [3,4] a method was developed to predict strong ground motion displacements and 

accelerations, assuming that an earthquake is an instantaneous mechanical rupture of the Earth’s crust (Fig.1.).  

 

Fig. 1. Schematic diagram of the medium after an earthquake-caused rupture: a. diagram of the rupture and the 
mechanical model of the upper strata, b. acceptable scheme of horizontal deformation of the vertical section along the 

O–O' line, c. the case of a homogenous near-surface thickness, H - total thickness of the surface layer, ∆ - distance 

from the rupture line to the observation point, 𝑣𝑚𝑎𝑥  - velocity of the blocks at the rupture, 

𝑣(𝑀, 𝛥) - velocity of the blocks at the distance ∆ from the rupture, 𝑢(𝑧, 𝑡) - function of displacement in perpendicular 

direction relative to the rupture, 𝜌𝑘, 𝐺𝑘, 𝐻𝑘 - density, shear modulus and thickness of the k-th layer, 𝐻 + 𝐻0 - depth of 

the rupture. Arrows indicate the block’s movement direction after rupture, the heavy line shows the rupture direction, 
dotted arrows show the direction of the layers’ inertia movements after rupture (medium compression and dilatation) 

The method uses derived theoretical formulas to calculate all three parameters of the ground motion: 

displacements, velocities and accelerations during strong (with a magnitude of 𝑀 ≥ 6.0) earthquakes for any 

non-homogeneous (multilayer) ground beddings with various physical and mechanical characteristics – 

thicknesses, densities and shear moduli and at certain distance of  from the expected earthquake’s rupture. 

For homogeneous (single-layer) foundation beddings, all typical parameters of the above-mentioned 

values and their changes over time (seismograms and accelerograms) for an earthquake with magnitude of 

6.0 ≤ 𝑀 ≤ 9.0  were derived and found to be nearly identical to the same parameters of actual earthquakes. 

Earthquake response spectra derived from synthetic accelerograms were also quite similar to the response 

spectra obtained through actual earthquake accelerograms [10]. This study addresses making synthetic 

seismograms and accelerograms for two-layer heterogeneous foundation beddings. 
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 For the general case, the functions of the foundation bedding layers’ inertia movement 𝑢𝑘(𝑧, 𝑡) after an 

earthquake-caused rupture must match the following wave equations [4,11]:    
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where: 𝐺𝑘 - the shear modulus of the k-th layer of the rocks,  𝜌𝑘 - its density,  𝜂𝑘 - the coefficient of 

viscosity,  𝐻𝑘  - thickness of the k-th layer, 𝑛 - the number of layers. The value of initial velocity for the 

inertial movement of layers (which is equal to the after-rupture plate velocity, but in the opposite direction) 

is assumed as per the following formula [4]: 
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which represents the initial velocity (in cm/sec) of soil particles’ vibration at future rupture (𝛥 = 0), or at a 

distance of 𝛥  from it, where 𝑅  is the length of the deformed area measured from the expected earthquake 

rupture (outside the area of 𝑅, the medium is assumed undeformed by the design earthquake). The values of 

the length  𝑅  and average slip 𝑢 (in meters) depending on the magnitude 𝑀 are determined per the following 

formulas [10]:         

( ) 310155 += uR ,    71.355.0lg −= Mu . (3) 

The summary of the values for ( ),Mv , R and ū are provided in Table 1, along with rock stratum ultimate 

(limit) shear strain values lim , which were determined by the new methodology developed in [10], 

according to which the relationship between lim  and earthquake magnitude M is as follows: 

 104𝛾𝑙𝑖𝑚 = 0.39𝑀 − 2.23. (4) 

   By assuming the solutions of the differential equation (1) as  
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and satisfying the boundary and initial conditions of the problem [3], the following transcendental equation 

for multilayer system, free oscillations frequencies and values of functions 𝑈𝑘𝑖(𝑧) and 𝑞𝑖(𝑡) are obtained. 

The final values of displacements (seismograms) and accelerations (accelerograms) at the ground surface 

(z=0) would be as follows [3]:  
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where: 
i

i
T

p
0

2
=  - the angular frequency of the whole multilayer system’s free oscillations derived from the 

relevant transcendental frequency equation, i
n - the foundation bedding’s attenuation coefficient for the i-th 

mode (
22
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pn  , 𝜼𝒌 = 𝜼 = 𝒄𝒐𝒏𝒔𝒕, 𝒌 = 𝟏, 𝟐), i

T
0  - the period of the i-th mode of the foundation bedding 

particle’s oscillation mode as shear seismic waves propagate with a velocity of  ( Sk
v ) in the layers of a 

heterogeneous foundation bedding, and the functions 𝑼𝒌𝒊(𝒛)  and  𝒒𝒊(𝒕) are as follows: 
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Table 1. Values of the soil particles’ oscillation velocities at the rupture 𝑣(𝑀, ∆) in cm/sec, average slip 𝑢 in meters, length of the deformed medium 

area 𝑅 in km, and ultimate shear strain of ground 𝛾𝑙𝑖𝑚 , depending on magnitude M and distance from the rupture ∆  in km [10] 
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Values of soil particles’ oscillation velocities 𝒗 (𝑴, ∆) in cm/sec depending on magnitude M, and distance from the rupture  

(∆< 𝑹)  in km1 

Values of Δ, in km 

2 4 6 8 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

17 24 27 32 39 48 59 61 101 

18         

19 

6 0.39 16.9 0.11 8.2 8.1 7.7 7.2 6.4 5.3 1.7                  

6.25 0.54 17.7 0.21 10.5 10.4 10.0 9.3 8.4 7.2 3.0 0.8                 

6.5 0.73 18.6 0.31 13.5 13.4 12.9 12.1 11.0 9.6 4.7 0.9                 

6.75 1.00 20 0.40 17.4 17.2 16.7 15.8 14.6 13.0 7.6 1.7                 

7 1.38 21.9 0.50 22.3 22.1 21.6 20.6 19.3 17.7 11.8 3.7                 

7.25 1.90 24.3 0.60 28.7 28.5 27.9 26.9 25.5 23.8 17.7 9.2 0.7                

7.5 2.60 28 0.70 36.8 36.6 36.0 35.1 33.8 32.1 26.2 18.0 7.5 2.6               

7.75 3.57 32.8 0.79 47.2 47.1 46.5 45.7 44.4 42.8 37.4 29.7 19.8 7.7 2.3              

8 4.90 39.5 0.89 60.7 60.5 60.0 59.3 58.2 56.8 51.9 45.1 36.4 25.7 13.0 1.5             

8.25 6.73 48.6 0.99 77.9 77.7 77.4 76.7 75.8 74.6 70.5 64.7 57.3 48.2 37.5 25.1 11.1 1.9           

8.5 9.23 61.1 1.09 100.0 99.9 99.6 99.0 98.3 97.3 94.0 89.3 83.3 75.9 67.2 57.1 45.8 33.0 19.0 3.6 0.3        

8.75 12.68 78.4 1.18 128.4 128.3 128.1 127.7 127.1 126.3 123.7 120.0 115.3 109.6 102.8 95.0 86.1 76.2 65.2 53.2 40.1 26.0 10.9 1.3     

9 17.38 102 1.28 164.9 164.8 164.6 164.3 163.9 163.3 161.3 158.5 155.0 150.6 145.5 139.5 132.8 125.3 116.9 107.8 97.9 87.2 75.7 63.5 50.4 36.5 21.9 

6.4 

3.2 

 
1 The values of the oscillation velocities of soil particles 𝒗 (𝑴, ∆) for values ∆< 𝑹 that are not included in the main table are additionally indicated in green. 
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Eigenmodes of oscillations for a two-layer base 

Creation of synthetic seismograms and accelerograms is addressed in detail below for a two-layer 

foundation bedding, the diagram of which is shown on Figure 2.   

 
Fig. 2. The diagram of a two-layer foundation bedding deformation 

The ground motion equation (1) for a two-layer foundation bedding is presented in the following forms: 
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Solutions of these equations by separation of variables can be presented as follows:   
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Inserting (10) and (9) and separating variables for the functions iU1  and iU2 , as well as functions ( )tqi   

the following equations are obtained: 
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Solutions of the equations (11) are then presented in the following form:  
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where in  is the layers’ attenuation coefficient for the i-th mode.   

Satisfying the boundary conditions of medium continuity at the layer separation and the initial conditions 

which are as follows:  
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From the last two equations (13) for coefficients i
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where ii
T 2

0
=  is the free oscillations period of the i-th mode for a two-layer foundation bedding, the 

values of which are determined by the transcendental equation (14). 

The final expressions for displacements and accelerations at the ground surface (i.e. z=0 and assuming 

that the attenuation coefficient values ni are small) will be: 
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where i  and    are designated.  is the decrement of vibrations of rock particles, which is assumed to be 

the same for all oscillation modes of the base. 
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 Inserting the values of ( )zU i1  and ( )zU i2  from (15) into (18), i  is derived as follows:  
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Values of the constant iB1 can be assumed to be equal to 1 ( 11 =iB ), because considering formulas (15) and 

(19), the final forms of (17) for seismograms and accelerograms ( )tu ,01  and ( )tu ,01
 , the values of iB1  will 

cancel out.  
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Accelerograms of two-layer and their equivalent single-layer foundations on the Earth's surface 

The 16 variants of heterogeneous foundation beddings are considered: the main parameters are presented 

in Table 2 and Figure 3, where 1H and 2H , 1Sv  and 2Sv , 1  and 2  are thicknesses, propagation velocities of 

seismic shear waves and ground layer densities, respectively, while free oscillation periods 𝑇01 , 𝑇02 and 𝑇03 

for all 16 heterogeneous beddings are derived from the transcendental equations of frequencies (14), and 

values of coefficients i  are obtained from the formula (19).  

Table 2. Physical and mechanical properties of heterogeneous foundation beddings 

Heterogeneous foundation beddings 

№ 

V
s1

, 
c
m

/s
 

H
1
, 

m
 


1
, 
t *

s2
/m

4
 

V
s2

, 
c
m

/s
 

H
2
, 

m
 


2
, 
t *

s2
/m

4
 Derived from the 

formula (14) 

According to the 

formula (19) 

𝑻
𝟎

𝟏
, s

 

𝑻
𝟎

𝟐
, s

 

𝑻
𝟎

𝟑
, s

 


1
 


2
 


3
 

1.  400 10 0.2 600 20 0.22 0.207 0.073 0.047 1.891 -0.522 0.483 

2.  250 10 0.2 600 20 0.22 0.232 0.107 0.056 1.865 -0.873 0.861 

3.  200 10 0.2 400 20 0.22 0.380 0.151 0.080 1.723 -0.701 0.714 

4.  150 10 0.2 300 20 0.2 0.458 0.190 0.100 1.842 -0.787 0.498 

5.  150 15 0.2 250 15 0.22 0.657 0.191 0.127 2.095 -1.000 0.704 

6.  125 15 0.2 200 15 0.2 0.925 0.308 0.154 1.903 -0.488 0.486 

7.  100 5 0.18 600 25 0.22 0.246 0.145 0.069 1.256 -1.104 0.867 

8.  600 25 0.22 100 5 0.18 0.740 0.107 0.079 6.329 -0.126 0.330 

9.  530 13 0.22 600 17 0.22 0.203 0.071 0.042 2.250 -0.612 0.465 

10.  620 14 0.22 700 16 0.22 0.174 0.061 0.036 2.406 -0.631 0.510 

11.  340 18 0.2 400 12 0.2 0.245 0.098 0.063 3.491 -1.105 0.346 

12.  450 14 0.22 550 16 0.22 0.336 0.074 0.054 1.789 -0.672 0.346 

13.  280 16.5 0.2 350 13.5 0.22 0.365 0.132 0.078 2.729 -0.813 0.688 

14.  150 15 0.2 200 15 0.22 0.667 0.222 0.138 2.442 -0.816 0.623 

15.  208 20 0.2 150 12 0.2 0.785 0.228 0.143 3.282 -0.587 0.443 

16.  200 4.8 0.1626 300 30.7 0.1775 0.469 0.160 0.100 1.241 -0.604 0.437 

Equivalent homogeneous beddings 

№ 

V
s1

, 
c
m

/s
 

H
1
, 

m
 


1
, 

t *
s2

/m
4
 

V
s2

, 
c
m

/s
 

H
2
, 

m
 


2
, 

t *
s2

/m
4
 

𝑽
s,

 c
m

/s
 

𝑻
𝟎

𝟏
, s

 

𝑻
𝟎

𝟐
, s

 

𝑻
𝟎

𝟑
, s

 


1
 


2
 


3
 

1.  400 10 0.2 600 20 0.22 514 0.233 0.078 0.047 1.274 -0.425 0.255 

2.  250 10 0.2 600 20 0.22 409 0.293 0.098 0.059 1.274 -0.425 0.255 

3.  200 10 0.2 400 20 0.22 300 0.400 0.133 0.080 1.274 -0.425 0.255 

4.  150 10 0.2 300 20 0.2 225 0.533 0.178 0.107 1.274 -0.425 0.255 

5.  150 15 0.2 250 15 0.22 187 0.640 0.213 0.128 1.274 -0.425 0.255 

6.  125 15 0.2 200 15 0.2 153 0.780 0.260 0.156 1.274 -0.425 0.255 

7.  100 5 0.18 600 25 0.22 327 0.367 0.122 0.073 1.274 -0.425 0.255 

8.  600 25 0.22 100 5 0.18 327 0.367 0.122 0.073 1.274 -0.425 0.255 

9.  530 13 0.22 600 17 0.22 567 0.211 0.070 0.042 1.274 -0.425 0.255 

10.  620 14 0.22 700 16 0.22 660 0.182 0.061 0.036 1.274 -0.425 0.255 

11.  340 18 0.2 400 12 0.2 361 0.332 0.111 0.066 1.274 -0.425 0.255 

12.  450 14 0.22 550 16 0.22 498 0.241 0.080 0.048 1.274 -0.425 0.255 

13.  280 16.5 0.2 350 13.5 0.22 307 0.390 0.130 0.078 1.274 -0.425 0.255 

14.  150 15 0.2 200 15 0.22 171 0.700 0.233 0.140 1.274 -0.425 0.255 

15.  208 20 0.2 150 12 0.2 181 0.705 0.235 0.141 1.274 -0.425 0.255 

16.  200 4.8 0.1626 300 30.7 0.1775 281 0.505 0.168 0.101 1.274 -0.425 0.255 
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Fig. 3. Diagrams of the considered heterogeneous foundation beddings 

Table 2 also provides the physical and mechanical characteristics for all equivalent homogeneous 

foundation beddings: average values of propagation velocity of displacement waves Sv  and densities  , 

which are determined by the following formulas2. 

21

2211

2

2

1

1

21 ,
HH

HH

v

H

v

H

HH
v

ss

S
+

+
=

+

+
=


 . 

(20) 

Values of the equivalent homogeneous foundation bedding first period are determined by the following 

formula:                        

( )
s

vHHТ
210

4 += ,   (21) 

whereas values of the next periods 
i

Т
0

 (i=2,3,4…) and coefficients 
i

 (i=1,2,3…) are assumed by the 

formulas for a homogeneous foundation bedding [4,10]:  

12

01

0
−

=
i

Т
Т

i , (i=2,3,4…),   
( )

12

14
1

−

−
=

+

i

i

i


 ,            i=1,2,3… . (22) 

 
2 RABC 20.04-2020. Earthquake Resistant Construction․ Design Codes. Yerevan, 2020. 
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The final results of calculations according to formulas (17) for peak ground displacements and accelerations 

under M=7.0, =15 km, and ground vibration decrement 𝛩𝑖 = 𝑛𝑖Т0𝑖 = 𝑐𝑜𝑛𝑠𝑡 (𝑖 = 1,2,3 … ) = 0.3 are 

provided in Table 3. As seen in the Table, when replacing heterogeneous bedding with an equivalent 

homogeneous one, the best approximation for ground accelerations  𝑢0𝑚𝑎𝑥
″   and   𝑢0𝑚𝑎𝑥

″
 occurs when the 

accelerograms of the equivalent heterogeneous bedding are calculated factoring in five modes of oscillation, 

while for the heterogeneous bedding it is done in three modes.   

Table 3. Peak values of seismograms and accelerograms for 16 heterogeneous  

beddings and equivalent homogeneous beddings 

№ Heterogeneous beddings  Equivalent homogeneous bedding Ratios of real 

displacements and 

accelerations of 
heterogeneous 

stratification taking 

into account three 

modes of oscillations to 

the equivalent taking 

into account five modes 

of oscillations  

F
ir

st
 o

sc
il

la
ti

o
n
 m

o
d
e 

p
er

io
d

  
  

𝑇 0
1

, s
ec

 

Actual values of 

displacements and 

accelerations with 

consideration of 

three oscillations 
modes according to 

the formula (17)    

A
v

er
ag

e 
v
al

u
es

 o
f 

th
e 

fi
rs

t 
o
sc

il
la

ti
o
n
 

m
o
d
e 

p
er

io
d
 T

0
1
, 

se
c 

 

Equivalent values 

of displacements 

and accelerations 

with consideration 

of three 
oscillations modes 

according to the 

formula (17) 

Equivalent values 

of displacements 

and accelerations 

with consideration 

of five oscillations 
modes according to 

the formula (17) 

𝒖𝟏𝒎𝒂𝒙(𝟎), 
cm 

𝒖𝟏𝒎𝒂𝒙
″ (𝟎),  
cm/s2 

𝑢
1

m
a

x
 (

0
) 

, 

 s
m

 

𝑢
1

𝑚
𝑎

𝑥
″

(0
),

  
sm

/s
2
 

𝑢
1

𝑚
𝑎

𝑥
(0

) 
, 

sm
 

 

𝑢
1

𝑚
𝑎

𝑥
″

(0
),

 

 s
m

/s
2

 

 

𝑢
1

m
a

x
(0

)

𝑢
1

𝑚
𝑎

𝑥
(0

) 

𝑢
1

𝑚
𝑎

𝑥
″

(0
)

𝑢
1

𝑚
𝑎

𝑥
″

(0
) 

1 0.207 0.75 1482 0.233 0.58 965 0.591 1374 1.29 1.08 

2 0.232 0.88 1714 0.293 0.73 768 0.745 1077 1.21 1.59 

3 0.380 1.35 1008 0.400 1.00 572 1.021 833 1.35 1.21 

4 0.458 1.70 737 0.533 1.34 428 1.361 617 1.27 1.19 

5 0.657 2.79 782 0.640 1.61 357 1.634 520 1.73 1.50 

6 0.925 3.35 370 0.780 1.96 292 1.991 421 1.71 0.88 

7 0.246 0.63 1173 0.367 0.92 623 0.937 901 0.68 1.30 

8 0.740 8.24 794 0.367 0.92 623 0.937 901 8.96 0.88 

9 0.203 0.89 1799 0.211 0.53 1057 0.535 1460 1.68 1.23 

10 0.174 0.80 1959 0.182 0.44 1085 0.444 1266 1.82 1.55 

11 0.245 1.62 1796 0.332 0.83 682 0.846 970 1.95 1.85 

12 0.336 1.08 1049 0.241 0.60 950 0.615 1383 1.80 0.76 

13 0.365 1.95 1309 0.390 0.97 579 0.990 829 2.01 1.58 

14 0.667 3.23 699 0.700 1.76 325 1.786 467 1.84 1.50 

15 0.785 4.77 592 0.705 1.77 321 1.797 462 2.69 1.28 

16 0.469 1.09 622 0.505 1.26 445 1.283 635 0.87 0.98 

Average value excludes № 7 and 83 1.66 1.3 

Figure 4 shows superposition of the first three oscillation modes for heterogeneous (a) and equivalent 

homogeneous (b) foundation beddings. As it is apparent, although for the individual oscillation modes peak 

occurrences hardly differ in time, the resulting acceleration for the heterogeneous bedding on average is 

higher by 1.3 times compared to accelerations of the homogeneous bedding. Therefore, unlike with 

homogeneous bedding, the superposition process in heterogeneous one largely depends on coefficients 𝑖, 

the values of which, unlike periods Т0i, depend on the medium deformation dynamic mode functions 𝑈𝑘𝑖(𝑧)   

(k=1, 2). This is obvious also in Table 4, which provides comparative characteristics of the first oscillation 

modes for heterogeneous and equivalent homogeneous foundation beddings.  

 
3 These variants are excluded because the physical and mechanical properties of their layers significantly differ 

from each other, and therefore, the ''method of averaging'' is not applicable to them.   
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Fig. 4. Acceleration time history curves (at ground surface) according to the formula (17):  for individual 
oscillation modes (first i=1, second i=2, and third i=3), and their sum (i=1+2+3), for the № 1 variant of 
heterogeneous foundation bedding with 𝑇01  = 0.207 𝑠𝑒𝑐 (a) and for the equivalent homogeneous bedding with 

average value 𝑇01 = 0.233 с. (b), under: M=7.0, =15 km, 1=2=3=0.3 

Table 4. Comparative characteristics of the fundamental oscillation periods and modes  

for heterogeneous and equivalent homogeneous foundation beddings 

№ 𝑻𝟎𝟏 , s 𝑻𝟎𝟏 , s 
𝑻𝟎𝟏

Т𝟎𝟏

 1 2 3 
𝜹𝟏

𝜹𝟐

 
𝜹𝟏

𝜹𝟑

 1 
4 

𝜹𝟏

𝜹𝟏

 

1 0.207 0.233 1.127 1.890 -0.522 0.483 3.62 3.92 1.274 1.483 

2 0.232 0.293 1.266 1.865 -0.873 0.861 2.14 2.17 1.274 1.464 

3 0.380 0.400 1.053 1.723 -0.701 0.714 2.46 2.41 1.274 1.352 

4 0.458 0.533 1.164 1.842 -0.787 0.498 2.34 3.70 1.274 1.446 

5 0.657 0.640 0.974 2.095 -1.000 0.704 2.10 2.98 1.274 1.645 

6 0.925 0.780 0.843 1.903 -0.488 0.486 3.90 3.91 1.274 1.494 

7 0.246 0.367 1.492 1.256 -1.104 0.867 1.14 1.45 1.274 0.986 

8 0.740 0.367 0.495 6.329 -0.126 0.330 50.07 19.15 1.274 4.968 

9 0.203 0.211 1.042 2.250 -0.612 0.465 3.67 4.84 1.274 1.766 

10 0.174 0.182 1.044 2.406 -0.631 0.510 3.81 4.72 1.274 1.889 

11 0.245 0.332 1.354 3.491 -1.105 0.346 3.16 10.09 1.274 2.740 

12 0.336 0.241 0.718 1.789 -0.672 0.346 2.66 5.17 1.274 1.404 

13 0.365 0.390 1.069 2.729 -0.813 0.688 3.36 3.96 1.274 2.142 

14 0.667 0.700 1.050 2.442 -0.816 0.623 2.99 3.92 1.274 1.917 

15 0.785 0.705 0.898 3.282 -0.587 0.443 5.59 7.41 1.274 2.576 

16 0.469 0.505 1.076 1.241 -0.604 0.437 2.05 2.84 1.274 0.974 

Average value excludes № 7 and 8 1.05    3.1 4.4  1.73 

Seismograms and accelerograms for the first 8 variants are shown in Figure 5.   

 
4 The ratio δ1/δi for any homogeneous bedding equals to (-1)i+1(2i-1), (i=1,2,3…). 
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3.  

 

 

4.  

 

Fig. 5. Synthetic seismograms and accelerograms of 16 variants of heterogeneous foundation beddings (Fig.3) 
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Fig. 5. (continued)   

 

5.  

 

 

6.  

 

 

7.  

 

 

8.  

 



115 

 

Fig. 5. (continued)   
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Fig. 5. (continued)   
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Conclusion 

The article develops a method for predicting seismograms and accelerograms for heterogeneous 

foundation beddings with known physical and mechanical characteristics of the bedrock layers, depending 

on the earthquake magnitude M≥6.0 and the distance of a given construction site from the fault line. For 16 

typical two-layer beddings in soils of various seismic categories, seismograms and accelerograms were 

obtained for M=7.0 and distance from rupture line =15 km. A method is suggested to replace 
heterogeneous foundation beddings with equivalent homogeneous ones and quantitative estimates of such 

replacements are derived. It is shown that the fundamental oscillation mode period 𝑇01 of the actual 

heterogeneous bedding changes (both increases and decreases) on average by 1.5 times, whereas the second 

and third oscillation mode periods on average by 1.3, and 1.05 times, respectively, compared to the periods 
of the second and third oscillation modes of the heterogeneous bedding. It should be noted that with such 

replacements there could be an increase in ground accelerations up to 1.6 times. Calculations for the 

equivalent homogeneous bedding that consider five oscillation modes instead of three, show ground 
acceleration decreases up to 1.3 times. It has been found out that heterogeneity of the foundation bedding, in 

fact, leads to increased acceleration and displacement values at the ground surface due to a significant 

change in the modes of dynamic deformation of the medium (the function ( )zUki  and coefficients 𝑖) 

compared to the homogeneous beddings. 
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